This HTML file includes a container for the chat messages, an input field for user messages, and a send button.

CSS

Next, create a CSS file named styles.css to style the chat application.

body {    font-family: Arial, sans-serif;    display: flex;    justify-content: center;    align-items: center;    height: 100vh;    background-color: #f0f0f0;    margin: 0;}#chat-container {    width: 400px;    border: 1px solid #ccc;    background-color: #fff;    border-radius: 8px;    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);    overflow: hidden;}#chat-window {    height: 300px;    padding: 10px;    overflow-y: auto;    border-bottom: 1px solid #ccc;}#messages {    display: flex;    flex-direction: column;}.message {    padding: 8px;    margin: 4px 0;    border-radius: 4px;}.user-message {    align-self: flex-end;    background-color: #007bff;    color: #fff;}.ai-message {    align-self: flex-start;    background-color: #e0e0e0;    color: #000;}#user-input {    width: calc(100% - 60px);    padding: 10px;    border: none;    border-radius: 0;    outline: none;}#send-button {    width: 60px;    padding: 10px;    border: none;    background-color: #007bff;    color: #fff;    cursor: pointer;}

This CSS file ensures the chat application looks clean and modern.

JavaScript

Create a JavaScript file named script.js to handle the frontend functionality.

document.getElementById(\\'send-button\\').addEventListener(\\'click\\', sendMessage);document.getElementById(\\'user-input\\').addEventListener(\\'keypress\\', function (e) {    if (e.key === \\'Enter\\') {        sendMessage();    }});function sendMessage() {    const userInput = document.getElementById(\\'user-input\\');    const messageText = userInput.value.trim();    if (messageText === \\'\\') return;    displayMessage(messageText, \\'user-message\\');    userInput.value = \\'\\';    // Send the message to the local AI and get the response    getAIResponse(messageText).then(aiResponse => {        displayMessage(aiResponse, \\'ai-message\\');    }).catch(error => {        console.error(\\'Error:\\', error);        displayMessage(\\'Sorry, something went wrong.\\', \\'ai-message\\');    });}function displayMessage(text, className) {    const messageElement = document.createElement(\\'div\\');    messageElement.textContent = text;    messageElement.className = `message ${className}`;    document.getElementById(\\'messages\\').appendChild(messageElement);    document.getElementById(\\'messages\\').scrollTop = document.getElementById(\\'messages\\').scrollHeight;}async function getAIResponse(userMessage) {    // Example AJAX call to a local server interacting with Ollama Llama 3    const response = await fetch(\\'http://localhost:5000/ollama\\', {        method: \\'POST\\',        headers: {            \\'Content-Type\\': \\'application/json\\',        },        body: JSON.stringify({ message: userMessage }),    });    if (!response.ok) {        throw new Error(\\'Network response was not ok\\');    }    const data = await response.json();    return data.response; // Adjust this based on your server\\'s response structure}

This JavaScript file adds event listeners to the send button and input field, sends user messages to the backend, and displays both user and AI responses.

Step 2: Setting Up the Backend

Node.js and Express

Ensure you have Node.js installed. Then, create a server.js file for the backend.

  1. Install Express:

    npm install express body-parser
  2. Create the server.js file:

    const express = require(\\'express\\');const bodyParser = require(\\'body-parser\\');const app = express();const port = 5000;app.use(bodyParser.json());app.post(\\'/ollama\\', async (req, res) => {    const userMessage = req.body.message;    // Replace this with actual interaction with Ollama\\'s Llama 3    // This is a placeholder for demonstration purposes    const aiResponse = await getLlama3Response(userMessage);    res.json({ response: aiResponse });});// Placeholder function to simulate AI responseasync function getLlama3Response(userMessage) {    // Replace this with actual API call to Ollama\\'s Llama 3    return `Llama 3 says: ${userMessage}`;}app.listen(port, () => {    console.log(`Server running at http://localhost:${port}`);});
  3. Run the server:

    node server.js

In this setup, your Node.js server will handle incoming requests, interact with Ollama's Llama 3 model, and return responses.

Conclusion

By following these steps, you've created a chat application that sends user messages to Ollama's Llama 3 model and displays the responses. This setup can be extended and customized based on your specific requirements and the features offered by the Llama 3 model.

Feel free to explore and enhance the functionality of your chat application. Happy coding!

","image":"http://www.luping.net/uploads/20240730/172234584966a8e979668b5.jpg","datePublished":"2024-07-30T21:24:08+08:00","dateModified":"2024-07-30T21:24:08+08:00","author":{"@type":"Person","name":"luping.net","url":"https://www.luping.net/articlelist/0_1.html"}}
"If a worker wants to do his job well, he must first sharpen his tools." - Confucius, "The Analects of Confucius. Lu Linggong"
Front page > Programming > Building a Chat Application with Ollama&#s Llama odel Using JavaScript, HTML, and CSS

Building a Chat Application with Ollama&#s Llama odel Using JavaScript, HTML, and CSS

Published on 2024-07-30
Browse:902

Building a Chat Application with Ollama

Introduction

In this blog post, we'll walk through the process of creating a simple chat application that interacts with Ollama's Llama 3 model. We'll use JavaScript, HTML, and CSS for the frontend, and Node.js with Express for the backend. By the end, you'll have a working chat application that sends user messages to the AI model and displays the responses in real-time.

Prerequisites

Before you begin, ensure you have the following installed on your machine:

  • Node.js
  • npm (Node Package Manager)

Step 1: Setting Up the Frontend

HTML

First, create an HTML file named index.html that defines the structure of our chat application.



    
    
    Chat with Ollama's Llama 3
    


    

This HTML file includes a container for the chat messages, an input field for user messages, and a send button.

CSS

Next, create a CSS file named styles.css to style the chat application.

body {
    font-family: Arial, sans-serif;
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100vh;
    background-color: #f0f0f0;
    margin: 0;
}

#chat-container {
    width: 400px;
    border: 1px solid #ccc;
    background-color: #fff;
    border-radius: 8px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    overflow: hidden;
}

#chat-window {
    height: 300px;
    padding: 10px;
    overflow-y: auto;
    border-bottom: 1px solid #ccc;
}

#messages {
    display: flex;
    flex-direction: column;
}

.message {
    padding: 8px;
    margin: 4px 0;
    border-radius: 4px;
}

.user-message {
    align-self: flex-end;
    background-color: #007bff;
    color: #fff;
}

.ai-message {
    align-self: flex-start;
    background-color: #e0e0e0;
    color: #000;
}

#user-input {
    width: calc(100% - 60px);
    padding: 10px;
    border: none;
    border-radius: 0;
    outline: none;
}

#send-button {
    width: 60px;
    padding: 10px;
    border: none;
    background-color: #007bff;
    color: #fff;
    cursor: pointer;
}

This CSS file ensures the chat application looks clean and modern.

JavaScript

Create a JavaScript file named script.js to handle the frontend functionality.

document.getElementById('send-button').addEventListener('click', sendMessage);
document.getElementById('user-input').addEventListener('keypress', function (e) {
    if (e.key === 'Enter') {
        sendMessage();
    }
});

function sendMessage() {
    const userInput = document.getElementById('user-input');
    const messageText = userInput.value.trim();

    if (messageText === '') return;

    displayMessage(messageText, 'user-message');
    userInput.value = '';

    // Send the message to the local AI and get the response
    getAIResponse(messageText).then(aiResponse => {
        displayMessage(aiResponse, 'ai-message');
    }).catch(error => {
        console.error('Error:', error);
        displayMessage('Sorry, something went wrong.', 'ai-message');
    });
}

function displayMessage(text, className) {
    const messageElement = document.createElement('div');
    messageElement.textContent = text;
    messageElement.className = `message ${className}`;
    document.getElementById('messages').appendChild(messageElement);
    document.getElementById('messages').scrollTop = document.getElementById('messages').scrollHeight;
}

async function getAIResponse(userMessage) {
    // Example AJAX call to a local server interacting with Ollama Llama 3
    const response = await fetch('http://localhost:5000/ollama', {
        method: 'POST',
        headers: {
            'Content-Type': 'application/json',
        },
        body: JSON.stringify({ message: userMessage }),
    });

    if (!response.ok) {
        throw new Error('Network response was not ok');
    }

    const data = await response.json();
    return data.response; // Adjust this based on your server's response structure
}

This JavaScript file adds event listeners to the send button and input field, sends user messages to the backend, and displays both user and AI responses.

Step 2: Setting Up the Backend

Node.js and Express

Ensure you have Node.js installed. Then, create a server.js file for the backend.

  1. Install Express:

    npm install express body-parser
    
  2. Create the server.js file:

    const express = require('express');
    const bodyParser = require('body-parser');
    const app = express();
    const port = 5000;
    
    app.use(bodyParser.json());
    
    app.post('/ollama', async (req, res) => {
        const userMessage = req.body.message;
    
        // Replace this with actual interaction with Ollama's Llama 3
        // This is a placeholder for demonstration purposes
        const aiResponse = await getLlama3Response(userMessage);
    
        res.json({ response: aiResponse });
    });
    
    // Placeholder function to simulate AI response
    async function getLlama3Response(userMessage) {
        // Replace this with actual API call to Ollama's Llama 3
        return `Llama 3 says: ${userMessage}`;
    }
    
    app.listen(port, () => {
        console.log(`Server running at http://localhost:${port}`);
    });
    
  3. Run the server:

    node server.js
    

In this setup, your Node.js server will handle incoming requests, interact with Ollama's Llama 3 model, and return responses.

Conclusion

By following these steps, you've created a chat application that sends user messages to Ollama's Llama 3 model and displays the responses. This setup can be extended and customized based on your specific requirements and the features offered by the Llama 3 model.

Feel free to explore and enhance the functionality of your chat application. Happy coding!

Release Statement This article is reproduced at: https://dev.to/koolkamalkishor/building-a-chat-application-with-ollamas-llama-3-model-using-javascript-html-and-css-40ec?1If there is any infringement, please Contact [email protected] to delete
Latest tutorial More>

Disclaimer: All resources provided are partly from the Internet. If there is any infringement of your copyright or other rights and interests, please explain the detailed reasons and provide proof of copyright or rights and interests and then send it to the email: [email protected] We will handle it for you as soon as possible.

Copyright© 2022 湘ICP备2022001581号-3