Lists are ordered, mutable sequences.
empty_list = [] list_with_items = [1, 2, 3] list_from_iterable = list("abc") list_comprehension = [x for x in range(10) if x % 2 == 0]
# Accessing elements first_item = my_list[0] last_item = my_list[-1] # Slicing subset = my_list[1:4] # Elements 1 to 3 reversed_list = my_list[::-1] # Adding elements my_list.append(4) # Add to end my_list.insert(0, 0) # Insert at specific index my_list.extend([5, 6, 7]) # Add multiple elements # Removing elements removed_item = my_list.pop() # Remove and return last item my_list.remove(3) # Remove first occurrence of 3 del my_list[0] # Remove item at index 0 # Other operations length = len(my_list) index = my_list.index(4) # Find index of first occurrence of 4 count = my_list.count(2) # Count occurrences of 2 my_list.sort() # Sort in place sorted_list = sorted(my_list) # Return new sorted list my_list.reverse() # Reverse in place
# List as stack stack = [1, 2, 3] stack.append(4) # Push top_item = stack.pop() # Pop # List as queue (not efficient, use collections.deque instead) queue = [1, 2, 3] queue.append(4) # Enqueue first_item = queue.pop(0) # Dequeue # Nested lists matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] flattened = [item for sublist in matrix for item in sublist] # List multiplication repeated_list = [0] * 5 # [0, 0, 0, 0, 0] # List unpacking a, *b, c = [1, 2, 3, 4, 5] # a=1, b=[2, 3, 4], c=5
Tuples are ordered, immutable sequences.
empty_tuple = () single_item_tuple = (1,) # Note the comma tuple_with_items = (1, 2, 3) tuple_from_iterable = tuple("abc")
# Accessing elements (similar to lists) first_item = my_tuple[0] last_item = my_tuple[-1] # Slicing (similar to lists) subset = my_tuple[1:4] # Other operations length = len(my_tuple) index = my_tuple.index(2) count = my_tuple.count(3) # Tuple unpacking a, b, c = (1, 2, 3)
# Named tuples from collections import namedtuple Point = namedtuple('Point', ['x', 'y']) p = Point(11, y=22) print(p.x, p.y) # Tuple as dictionary keys (immutable, so allowed) dict_with_tuple_keys = {(1, 2): 'value'}
Sets are unordered collections of unique elements.
empty_set = set() set_with_items = {1, 2, 3} set_from_iterable = set([1, 2, 2, 3, 3]) # {1, 2, 3} set_comprehension = {x for x in range(10) if x % 2 == 0}
# Adding elements my_set.add(4) my_set.update([5, 6, 7]) # Removing elements my_set.remove(3) # Raises KeyError if not found my_set.discard(3) # No error if not found popped_item = my_set.pop() # Remove and return an arbitrary element # Other operations length = len(my_set) is_member = 2 in my_set # Set operations union = set1 | set2 intersection = set1 & set2 difference = set1 - set2 symmetric_difference = set1 ^ set2
# Frozen sets (immutable) frozen = frozenset([1, 2, 3]) # Set comparisons is_subset = set1 = set2 is_disjoint = set1.isdisjoint(set2) # Set of sets (requires frozenset) set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}
Dictionaries are mutable mappings of key-value pairs.
empty_dict = {} dict_with_items = {'a': 1, 'b': 2, 'c': 3} dict_from_tuples = dict([('a', 1), ('b', 2), ('c', 3)]) dict_comprehension = {x: x**2 for x in range(5)}
# Accessing elements value = my_dict['key'] value = my_dict.get('key', default_value) # Adding/Updating elements my_dict['new_key'] = value my_dict.update({'key1': value1, 'key2': value2}) # Removing elements del my_dict['key'] popped_value = my_dict.pop('key', default_value) last_item = my_dict.popitem() # Remove and return an arbitrary key-value pair # Other operations keys = my_dict.keys() values = my_dict.values() items = my_dict.items() length = len(my_dict) is_key_present = 'key' in my_dict
# Dictionary unpacking merged_dict = {**dict1, **dict2} # Default dictionaries from collections import defaultdict dd = defaultdict(list) dd['key'].append(1) # No KeyError # Ordered dictionaries (Python 3.7 dictionaries are ordered by default) from collections import OrderedDict od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) # Counter from collections import Counter c = Counter(['a', 'b', 'c', 'a', 'b', 'b']) print(c.most_common(2)) # [('b', 3), ('a', 2)]
Strings are immutable sequences of Unicode characters.
single_quotes = 'Hello' double_quotes = "World" triple_quotes = '''Multiline string''' raw_string = r'C:\Users\name' f_string = f"The answer is {40 2}"
# Accessing characters first_char = my_string[0] last_char = my_string[-1] # Slicing (similar to lists) substring = my_string[1:4] # String methods upper_case = my_string.upper() lower_case = my_string.lower() stripped = my_string.strip() split_list = my_string.split(',') joined = ', '.join(['a', 'b', 'c']) # Other operations length = len(my_string) is_substring = 'sub' in my_string char_count = my_string.count('a')
# String formatting formatted = "{} {}".format("Hello", "World") formatted = "%s %s" % ("Hello", "World") # Regular expressions import re pattern = r'\d ' matches = re.findall(pattern, my_string) # Unicode handling unicode_string = u'\u0061\u0062\u0063'
Arrays are compact sequences of numeric values (from the array module).
from array import array int_array = array('i', [1, 2, 3, 4, 5]) float_array = array('f', (1.0, 1.5, 2.0, 2.5)) # Operations (similar to lists) int_array.append(6) int_array.extend([7, 8, 9]) popped_value = int_array.pop()
Stacks can be implemented using lists or collections.deque.
# Using list stack = [] stack.append(1) # Push stack.append(2) top_item = stack.pop() # Pop # Using deque (more efficient) from collections import deque stack = deque() stack.append(1) # Push stack.append(2) top_item = stack.pop() # Pop
Queues can be implemented using collections.deque or queue.Queue.
# Using deque from collections import deque queue = deque() queue.append(1) # Enqueue queue.append(2) first_item = queue.popleft() # Dequeue # Using Queue (thread-safe) from queue import Queue q = Queue() q.put(1) # Enqueue q.put(2) first_item = q.get() # Dequeue
Python doesn't have a built-in linked list, but it can be implemented.
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def append(self, data): if not self.head: self.head = Node(data) return current = self.head while current.next: current = current.next current.next = Node(data)
Trees can be implemented using custom classes.
class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: def __init__(self, root): self.root = TreeNode(root) def insert(self, value): self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if valueHeaps
Heaps can be implemented using the heapq module.
Usage
import heapq # Create a heap heap = [] heapq.heappush(heap, 3) heapq.heappush(heap, 1) heapq.heappush(heap, 4) # Pop smallest item smallest = heapq.heappop(heap) # Create a heap from a list my_list = [3, 1, 4, 1, 5, 9] heapq.heapify(my_list)Graphs
Graphs can be implemented using dictionaries.
Simple Implementation
class Graph: def __init__(self): self.graph = {} def add_edge(self, u, v): if u not in self.graph: self.graph[u] = [] self.graph[u].append(v) def bfs(self, start): visited = set() queue = [start] visited.add(start) while queue: vertex = queue.pop(0) print(vertex, end=' ') for neighbor in self.graph.get(vertex, []): if neighbor not in visited: visited.add(neighbor) queue.append(neighbor)Advanced Data Structures
Trie
class TrieNode: def __init__(self): self.children = {} self.is_end = False class Trie: def __init__(self): self.root = TrieNode() def insert(self, word): node = self.root for char in word: if char not in node.children: node.children[char] = TrieNode() node = node.children[char] node.is_end = True def search(self, word): node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node.is_endDisjoint Set (Union-Find)
class DisjointSet: def __init__(self, vertices): self.parent = {v: v for v in vertices} self.rank = {v: 0 for v in vertices} def find(self, item): if self.parent[item] != item: self.parent[item] = self.find(self.parent[item]) return self.parent[item] def union(self, x, y): xroot = self.find(x) yroot = self.find(y) if self.rank[xroot] self.rank[yroot]: self.parent[yroot] = xroot else: self.parent[yroot] = xroot self.rank[xroot] = 1This comprehensive cheatsheet covers a wide range of Python data structures, from the basic built-in types to more advanced custom implementations. Each section includes creation methods, common operations, and advanced techniques where applicable.
0
تنصل: جميع الموارد المقدمة هي جزئيًا من الإنترنت. إذا كان هناك أي انتهاك لحقوق الطبع والنشر الخاصة بك أو الحقوق والمصالح الأخرى، فيرجى توضيح الأسباب التفصيلية وتقديم دليل على حقوق الطبع والنشر أو الحقوق والمصالح ثم إرسالها إلى البريد الإلكتروني: [email protected]. سوف نتعامل مع الأمر لك في أقرب وقت ممكن.
Copyright© 2022 湘ICP备2022001581号-3